Magnétosphères comparées (et plus encore ??)

P. Zarka (LESIA)

Voir détails dans toutes les présentations suivantes !

Types d'interaction (Lepping, 1985)

A: VS - absorbant (Lune) \Rightarrow sillage

B: VS - atmosphère+ionosphère
sans B (Vénus, Comètes, Titan/VS)
⇒ MS induite

C: VS - conducteur sans atmosphère: $V_{VS} \times B_{VS} \Rightarrow E \Rightarrow B$

(pas d'exemple dans leVS)

D: VS - B planétaire suffisant pour que P_B équilibre la pression du plasma incident (pression dynamique domine le VS) \Rightarrow MS développée

Depuis 1985:

- Uranus (B tilté à 60° !)
- Neptune
- mini-MS de Mars & Lune (B crustal)

• ...

GENERALIZED PLANETARY OBSTACLES TO SOLAR WIND FLOW PROPER MAGNETOSPHERES: MERCURY -- VACUUM B EARTH -- "VACUUM" B SATURN -- SOMETIMES VACUUM B, SOMETIMES PLASMA + B • JUPITER -- B AND PLASMA, R SP - PSH POSSIBLE PROPER MACNETOSPHERES: URANUS NEPTUNE INDUCED "MAGNETOSPHERES": VENUS (IONOSPHERE INTERACTION TITAN (IONOSPHERE INTERACTION) SOME COMETS (THOSE THAT GET SUFFICIENTLY CLOSE TO THE SUN) MAGNETOSPHERE OR LONOSPHERE? MARS (TBD BY MARS OBSERVER MISSION) HARD, PLASMA ABSORBING BODIES: EARTH'S MOON ASTEROIDS (PROBABLY) Figure 1

6 planètes magnétisées (cas D) dans le SS= M, T, J, S, U, N

Origine de B

- dynamo (rotation+convection d'un fluide conducteur)
- dynamo rémanente (Mars, Lune)
- induit (J/S satellites)

Planet or satellite	Observed surface field	Comments and interpretation
	(in T, approximate) $1 G = 10^{-4} T = 10^{5} nT$	[Stevenson, 2003]
Mercury	2×10^{-7}	Not well characterized or understood
Venus	$< 10^{-8}$ (global); no useful constraint on local fields.	No dynamo. Small remanence
Earth	5×10^{-5}	Core dynamo
Moon	Patchy (10 ⁻⁹ –10 ⁻⁷). Impact-generated? No global field	Ancient dynamo?
Mars	Patchy but locally strong $(10^{-9}-10^{-4})$ field	Ancient dynamo, remanent magnetic lineations
Jupiter	4.2×10^{-4}	Dynamo (extends to near surface)
Io	$< 10^{-6}$?	Complex (deeply imbedded in Jovian field)
Europa	10 ⁻⁷	Induction response (salty water ocean)
Ganymede	2×10^{-6}	Dynamo likely
Callisto	4×10^{-9}	Induction response (salty water ocean)
Saturn	2×10^{-5}	Dynamo (deep down)
Titan	$< 10^{-7}$	Need more data
Uranus	2×10^{-5}	Dynamo(uncertain depth)
Neptune	2×10^{-5}	Dynamo (uncertain depth)

Mesures & représentation des B planétaires

• à distance = radio \Rightarrow existence, intensité, inclinaison de B Jupiter, rotation \Rightarrow system III (1965.0) de longitude magnétique : P = 9 h 55 min 29.711 sec

localement par magnétomètres sur trajectoires orbitales ou fly-bys (+ proches)
 ⇒ description via harmoniques sphériques contraintes jusqu'à un ordre 3-5 (Terre = 14)

= troncature de développements à ordre + élevé

Planète	Terre	Jupiter	Jupiter	Saturne	Uranus	Neptune
R _P (km)	6378	71372	71372	60330	25600	24765
Modèle	IGRF 2000	06	VIT4	Z3	Q3	08
g_1^{0}	-0.29615	+4.24202	+4.28077	+0.21535	+0.11893	+0.09732
g_1^{-1}	-0.01728	-0.65929	-0.75306	0	+0.11579	+0.03220
h_1^{-1}	+0.05186	+0.24116	+0.24616	0	-0.15685	-0.09889
g_2^{0}	-0.02267	-0.02181	-0.04283	+0.01642	-0.06030	+0.07448
g_2^{1}	+0.03072	-0.71106	-0.59426	0	-0.12587	+0.00664
h_2^{-1}	-0.02478	-0.40304	-0.50154	0	+0.06116	+0.11230
g_2^2	+0.01672	+0.48714	+0.44386	0	+0.00196	+0.04499
h_2^2	-0.00458	+0.07179	+0.38452	0	+0.04759	-0.00070
g_{3}^{0}	+0.01341	+0.07565	+0.08906	+0.02743	0	-0.06592
g_{3}^{1}	-0.02290	-0.15493	-0.21447	0	0	+0.04098
h_{3}^{1}	-0.00227	-0.38824	-0.17187	0	0	-0.03669
g_{3}^{2}	+0.01253	+0.19775	+0.21130	0	0	-0.03581
h_3^2	+0.00296	+0.34243	+0.40667	0	0	+0.01791
g_{3}^{3}	+0.00715	-0.17958	-0.01190	0	0	+0.00484
h ₃ ³	-0.00492	-0.22439	-0.35263	0	0	-0.00770
M^{t} dipolaire (G.R _P ³)	0.305	4.26		0.215	0.228	0.142
Inclinaison (B / Ω)	+11°	-9.6°		-0°	-58.6°	-46.9°
Offset centre dipôle	0.08	0.07		0.04	0.31	0.55
/ centre planète (R_p)						

Mesures & représentation des B planétaires

- Jupiter (& Saturne): disque de courant explicite dans l'équateur centrifuge: 300 MA (5-50 x 5 RJ)
- Saturne: B aligné avec axe de rotation !
- Mercure: asymétrie N/S, équateur magnétique décalé de 0,2 R_M vers le Nord

Origine & taille de la magnétosphère

• Équilibre de pression VS / B planétaire :

 $P_{VS} = KNmV^2cos^2\chi$ = $P_{MS} = (2B_P)^2/2\mu_o$ (K = I-2)

• Magnétopause (point subsolaire) : $R_{MP} = (2 B_{eq}^2/\mu_o K NmV^2)^{1/6}$

Champ dipolaire : $B_P = B_{eq} (I + 3\cos^2\theta)^{1/2}/R^3$

	Mercure	Terre	Jupiter	Saturne	Uranus	Neptune
R _P (km)	2 439	6 378	71 492	60 268	25 559	24 764
D orbitale (UA)	0.39	1	5.2	9.5	19.2	30.1
M_{dip} (G.km ³)	5.5×10^{7}	7.9×10^{10}	1.6×10^{15}	4.7×10^{13}	3.8×10^{12}	2.2×10^{12}
Champ à l'équateur B _e (G)	0.003	0.31	4.3	0.21	0.23	0.14
Inclinaison [B,Ω] (°) et sens	+14	+11.7	-9.6	-0.	-58.6	-46.9
R _{MP} (R _P) calculée [mesurée]	1.4 [~1.5]	9 [~10]	40 [~90]	17 [~20]	22 [~18]	21 [~23]

Origine & taille de la magnétosphère

Forme de la magnétosphère

Choc en amont, Cusp près des pôles magnétiques, B "draping" (id. comètes)
 ⇒ queue (jusqu'à Saturne pour Jupiter)

- Si pas de B intrinsèque, MS induite, BS, B draping, queue & choc mais pas de cusp
- Mercure: cusp S très ouvert (B asymétrique) \Rightarrow bombardement de la surface par le VS

 $\phi_{conv} \sim \epsilon V_{SW} B_{SW} R R_J \sin \theta_{12-24h}$ (Convection = Cycle de Dungey)

 $\varphi_{conv} \sim \epsilon V_{SW} B_{SW} R R_P \sin \theta_{12-24h}$ (Convection = Cycle de Dungey)

 $\varphi_{\text{corot}} \sim \Omega B_{\text{e}} R_{\text{P}}^2/R$ (Corotation \Rightarrow plasmasphère)

équipotentielles = lignes d'écoulement du plasma thermique

	Mercure	Terre	Jupiter	Saturne	Uranus	Neptune
R _p (km)	2 439	6 378	71 492	60 268	25 559	24 764
M _{dip} (G.km ³)	5.5×10^{7}	7.9×10^{10}	1.6×10^{15}	4.7×10^{13}	3.8×10^{12}	2.2×10^{12}
Champ à l'équateur B _e (G)	0.003	0.31	4.3	0.21	0.23	0.14
R _{MP} (R _P) calculée [mesurée]	1.4 [~1.5]	9 [~10]	40 [~90]	17 [~20]	22 [~18]	21 [~23]
B VS (nT)	10 (20)	4	0.8	0.4	0.2	0.13
Prot (h,m)	1407 h 30 m	24 h	9 h 55.5 m	10 h 39.4 m	17 h 14.4 m	16 h 6.6 m
E _{conv} (mV) [ε=0.15]	0.6	0.24	0.05	0.025	0.013	0.008
Δφ _{conv} (kV) [ε=0.15]	7	46	900	90	17	14
$\Delta \phi_{\text{corot}} (kV)$	0.002	90	400 000	12 000	1 500	1000
R_{S}/R_{MP}	0.02	0.8	4	4	4	3

Sources de plasma

•VS, ionosphère, satellites (surface, anneaux)

- Sources Jupiter >> Saturne, Uranus, Neptune
- $N_{neutres}/N_{plasma} = 100$ @ Saturne, 0.003 @ Jupiter
- Masse du plasma stockée ~ 10⁷ kg @ Terre, ~ 10¹⁰ kg @ Jupiter

Sources de plasma

 \Rightarrow satellites = sources de plasma dans la région de corotation, au delà de l'orbite synchrone (J, S...) $F_{centrifuge} = F_{gravitation}$

Planet	$R_{\rm p}$ [km]	Ω [rads/s]	$G_{\rm surf} [{\rm ms}^{-2}]$	$R_{\rm synch}/R_{\rm planet}$	Plasma sources
Mercury	2440	1.24×10^{-6}	3.3	96	None
Earth	6371	$7.29 imes 10^{-5}$	9.8	6.6	Ionosphere
Jupiter	70000	$1,77 \times 10^{-4}$	25.6	2.3	Io
Saturn	60000	1.71×10^{-4}	10.8	1.8	Rings, moons
Uranus	25500	$1,01 \times 10^{-4}$	8.6	3.2	Moons
Neptune	24830	1.01×10^{-4}	10.1	3.4	Moons

- pickup / mass-loading \Rightarrow mise en corotation
- + force centrifuge (instabilité d'interchange) \Rightarrow transport radial \Rightarrow de corotation à sous-corotation
- ⇒ dynamique "rotationnelle", dominée en interne

⇒ cycle de Vasyliunas (dépend de B, R, vitesse de rotation)

• Saturne = cas intermédiaire avec superposition des cycles de Dungey & Vasyliunas ?

URANUS convection \perp corotation \Rightarrow trajectoires hélicoidales du plasma ?

NEPTUNE MS alternativement «Earth-like» & «pole-on» \Rightarrow pas de plasmasphère, aurores

à moyennes latitudes

Dynamique interne / externe

• Reconfigurations de la MS due à la dynamique interne = événements énergétiques @ J & S

Reconfigurations de la MS due à la dynamique externe (sous-orages / space weather @ T, S, M ... J?, U?)
J, U : compressions MS ~ orages ?

 Reconnexion / FTE observés par Mariner 10 & Messenger @ Mercure
 ⇒ burts d'e- 30-200 keV

 \Rightarrow sous-orages (brefs) ?

Interaction MS - satellites

non magnétisés (= lo ⇒ ondes d'Alfvén / Inducteur Unipolaire)

• magnétisés (= Ganymede \Rightarrow reconnexion)

Pas de bow shock

Energétique des interactions

• Énergétique de l'interaction VS-MS & MS-satellites semble dominée par le flux du vecteur de Poynting sur l'obstacle (Akasofu, Zarka)

$$P_{dissipée} = \epsilon B^2 / \mu_o V \pi R_{obs}^2$$
 ($\epsilon \sim 0.1 - 0.2$)

(bien que l'équilibre de pression fasse intervenir la pression cinétique du VS, mais les 2 varient = au-delà de l'orbite terrestre)

Phénomènes "rotationnels"

• Jupiter: tous les phén. MS modulés par la rotation ⇒ Système III (1965.0) :

 $\omega = 870.536^{\circ}/day$, P = 9h 55m 29.711s (méridien origine à 0h UT on 1/1/1965) adopté par l'UAI en 1976 (précision ~40 msec ~10⁻⁶), stable / décennies (ex:VIPAL) = référence pour mesures de B, particules énergétiques, émissions radio ...

nKOM & variations de brillance d'ion S dans l'IPT & arcs DAM ⇒ période 1-10% + longue
⇒ système IV ? (rotation différentielle interne ?)
La plupart de ces phénomènes sont marginaux & à basse latitude ⇒ lag / interchange / transport
radial combiné au système III (le système IV n'existe pas, il couvre des lags ~1-10% / système III)

• Saturne : B + faible et aligné / Ω , pourtant modulation rotationnelle claire (\neq dans les 2 hémisphères!) \Rightarrow indépendante du tilt à l'ordre 0

Mais phénomènes variables + visibles qu'à Jupiter, où la corotation domine, & influence du VS + importante

⇒ variations à long & court terme de P_rot_radio (SKR)

Très ≠ Système IV car variation de la (DES) périodes & phases ~continues

• Terre : modulation rotationnelle faible, peut-être mise en évidence via AKR (Lamy, Panchenko)

• U & N : modulation rotationnelle par le tilt de B probablement dominante

Aurores & émissions radio

liées à des courants alignés :

• lignes de champs ouvertes / fermées

sous-corotation ≥20 RJ @ Jupiter
 ⇒ ovale auroral principal

 \Rightarrow corrélation ou anticorrélation entre compressions MS & aurores ?

• induits par les satellites

Particules énergétiques & Émission synchrotron

• Ceintures de «radiations» développées & rayonnement intense @ Jupiter

- Ceintures de Van Allen @ Terre mais synchrotron non détecté: background d'ondes de plasma
 ⇒ pertes très rapides dans les ceintures d'e- internes ?
- Pas de ceinture sur Mercure

Explorations passées & à venir

• passées

- sol: radio (RDN,VLA etc.)

- spatiales: Voyager I & 2, Ulysses, Galileo, Cassini, Wind, Cluster, Themis, Mariner I0, Messenger, MGS, Lunar prospector, New Horizons, HST + Stereo...

• à venir:

- sol: LOFAR, NenuFAR, SKA
- spatiales: BepiColombo, Juno / Juice ...

JUNO va construire un B de référence qui donnera un cadre précis pour réinterpréter toutes les observations passées (MAG, radio...)

U & N : MS "spéciales" \Rightarrow à réexplorer : Uranus pathfinder ? (à minima: Farside, HST)

et plus encore ...

- Dynamique MS externe \Rightarrow «upscalable» aux exoplanètes (Jupiters chauds) (Zarka, Grießmeier & al.)
- Dynamique interne \Rightarrow plus difficile mais possible (Nichols)
- MS d'* (héliosphère), de pulsars, de galaxies ...