

Exploration des ceintures de radiations aux basses fréquences avec LOFAR

J. N. Girard*, P. Zarka, C. Tasse, S. Hess, I. de Pater, B. Cecconi, D. Santos-Costa, R. Sault, R. Strom, R. Courtin M. Hofstadter, N. Nettelmann, A. Sicard-Piet, L. Lorenzato, R. Fende and the LOFAR Planets-exoplanets Working Group

*AIM/Irfu/SAp, CEA Saclay, France

Jupiter

The various radio emissions at Jupiter

Cyclotron emission ($\lambda \ge Dm$)

Synchrotron emission from radiation belts (λ = cm-dm-m)

Properties of the radiation belt radio emission

- Relativistic electrons (100s keV \rightarrow 100s MeV) trapped near the magnetic equator
- Optically thin medium \rightarrow Max of emission on both planet sides
- Anisotropic (beamed) and polarized emissions (~20-25% linearly, <1% circularly)
- Brightness distribution \rightarrow interaction between e⁻ and inner satellites/dust ring...

Past observations

• Low frequencies \rightarrow electrons with lower energies / lower |B| regions $\nu_{max} \propto E^2 |B|$

LOFAR LOw Frequency ARray

• Giant digital & multi-purpose radio telescope distributed across Europe

NL Station

- Radio interferometer composed of ~48 phased arrays (stations)
- Working bands: **LBA** 30-80 MHz & **HBA** 120-240 MHz
- Improved angular (arcsec), temporal (µs), spectral (kHz) resolutions
- High sensitivity (~mJy) I Jy = 10^{-26} W.m⁻².Hz⁻¹

Observing strategy with LOFAR

- 10 consecutives hours (~1 rotation)
- HBA F = 127-172 MHz
- 29 NL stations
- 2 // beams : Jupiter & phase calibrator 4° away
- $\delta t = 0.3 \text{ ms}$, $\delta f = 3 \text{ kHz}$
- Full Stokes measurement

LOFAR NL

Data processing

LOFAR = wide Field of View instrument

Planetary imaging = « classical » radio imaging + specificities

- Proper motion of the planet on the sky

- Intrinsic motion of the radiations belts around the planet

18h-20h

10/11/2011

20h-22h

10/11/2011

Declination

00h-02h

10/11/2011

[Levin et al., 2001]

Jupiter - CML=282.0 = Observer longitude

Data processing

LOFAR = wide Field of View instrument

Planetary imaging = « classical » radio imaging + specificities

- Proper motion of the planet on the sky

 \rightarrow Phase center correction in the Fourier domain

- Intrinsic motion of the radiations belts around the planet

 \rightarrow Rotation correction in the Fourier domain

only on Jupiter

→ Prior: wide-field imaging and source substraction (peeling)

Data processing

LOFAR = wide Field of View instrument

Planetary imaging = « classical » radio imaging + specificities

- Proper motion of the planet on the sky

 \rightarrow Phase center correction in the visibility plane

- Intrinsic motion of the radiations belts around the planet

 \rightarrow Rotation correction in the visibility plane

 \rightarrow Prior: wide-field imaging and source substraction (peeling)

only on Jupiter

• after corrections \rightarrow image data cubes

- Integration over 127-172 MHz, $\Delta t = 2h$,
- After the geometric corrections on the visibility plane
 - \rightarrow corrections are OK

• Integration over 127-172 MHz, $\Delta t = 7h$

• Integration over 127-172 MHz, $\Delta t = 7h$

• Integration over 127-172 MHz, $\Delta t = 7h$

• Nearby sources around Jupiter in data before source substraction

Integrated flux density

On going work...

LBA F=55 MHz - 10 SB - 37 stat - 2h

HBA

• full study on-going...

spectrum, resolved emission, comp. with WSRT, temporal variability...

Conclusions (so far)

- LOFAR, flexible planetary imager
- First resolved images < 200 MHz
- Larger extent of the belts at LF
- Basic morphological properties
- Potential (temporal) variation of the spectrum

Prospects

- Full (instantaneous) spectrum
- Short and long-term variability
- Polarization
- Comparison with Salammbô (ONERA)
- 3D Reconstruction (by tomography)
- \rightarrow Distribution, transport/source/loss processes of (low energy) e⁻
- ightarrow Topology of the inner magnetic field

[de Pater & Sault, 1998]

[Connerney et al., 1993 ; Santos-Costa, 2009]

France-Berkeley Fund proposal submitted in January for this study

What about Saturn with LOFAR?

[Priv. com. Hofstadter, Courtin]

Extreme Earth/Saturn

Saturn radiation belts emission

Lower magnetic field (/10 B_{jup}) & e⁻ energy (<10 MeV)
e⁻ losses due to interaction with the rings / satellites
Expected flux density: 0.15-0.45 mJy

 \rightarrow Detection challenge from the ground

[Lorenzato, 2012, Sicard, 2004, Santos-Costa, 2001]

Élévation des radiosources

Longitude du méridien central (CML)

Beaming

Émission maximale quand l'observateur passe à l'équateur magnétique Magnetic Latitude = D_E + 9.6° cos(CML- $\lambda_{III,NP}$) D_F = jovicentric latitude of Earth = 3.29° in Nov. 2011

Fig. 8. View on top of Jupiter with three B = const contours of 1.80, 2.00, and 0.80 G in the magnetic equatorial surface of the O_4 model and two lines of sight to the observer at equal distances from the planet, for a central meridian longitude of 220°.

