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Conclusion : the Langmuir probes are not only
detectors for

, but can also provide information
about




Introduction : what is a Langmuir probe ?

planetary missions (Astrid2 / Demeter / Rosetta /

m v' Classically used in laboratory experiments, often onboard
- MAVEN / Cassini / JUICE ...)

v A Langmuir probe (LP) is a conducting sphere mounted on a
boom. Its potential (Ubias) is artificially varied to collect
ions or electrons depending on the sign of the potential.

v' The fitting of the curve Current = f(Ubias) allows to
extract many plasma characteristics : electron (ne) and ion
density (ni), electron temperature (Te), spacecraft
potential (Usc)

Problem : limited to low temperatures (< few eV) and high
densities (> several part/cm3)

we) mostly used for ionospheric plasma
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Examples of LP magnetospheric studies
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Mapping of equatorial cold ion density
and velocity in the inner magnetosphere
(L<7) by Holmberg et al. (2014)

A day-night asymmetry for both ion

density and velocity, potentially induced
by the radiation pressure force on E ring
dust grains (= additional electric field of
0.1-2 mV/m)

4-6 R,
Ion velocity [km/s]

Mapping of equatorial cold electron
density in the outer magnetosphere
(L>10) by Morooka et al. (2009)

Low densities measured from a proxy
based on the floating potential of the
Langmuir probe

Ion velocity, 003-133, Izl<0.5

LT [hrs]

Ton velocity [km/s]

Ion velocity [km/s]






Which currents are measured ?
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Which currents are measured ?
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Start of the study : a current belt
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Surprise : do we observe Saturn's radiation belts with
the Langmuir probe ??



Origin of the observed "belt”

Only the current I_.. of energetic electrons (and ftheir induced
secondaries) can explain the observations.
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Confirmation by a correlation analysis between the LP current and other
instruments : strong correlation with impacting 250-450 eV electrons



Origin of the observed "belt”

LP ion side current

(o) Tropped Electror\s12 De _/ong et al. (2011)

Garnier et al. 2012

ELS Energy Flux (10% ev cm™ s7' sr7')

Mapping the ion side current (and thus I «)
of the LP reveals the radial profile as well
as the day-night asymmetry of hot
electrons, with similar results to CAPS Ve A'YS CAPS

measurements (Schippers 2008 ; De Jong . ¥ 12-100 eV
et al. 2010, 2011)




The plasmapause-like boundary aT Safurn
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Mapping the ion side current of
the LP reveals the electron density =z e
gradients inside L=6-10 and may 3
thus help to locate the =
: 2
plasmapause-like boundary 5
identified by Gurnett et al. (2010). €
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Modeling the energetic current of the LP

€ The current due to incident/secondary/backscattered electrons is :
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The secondary electron yield depends highly on 9,

Boltzmann
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(maximum value), which is

a poorly known characteristic of the LP surface
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Modeling the energetic current : results
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Estimating the hot electrons characteristics

< For a maxwellian electron distribution function, the equations for the
DC level and slope of the I-V curve lead to :

[ener 27[€nermoments
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As long as the hot electrons (and secondaries) drive the
measured current (i.e. off the cold and dense equatorial

# plasmadisk), we can estimate the ne/Te characteristics of these
electrons.

Potentially interesting since CAPS was shut down.



Estimation of the hot electrons temperature
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Comparison between the estimated (by the LP) and
measured (by CAPS) electron temperatures



Estimation of the hot electrons density
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Information about the pitch angle distribution

Question : can we get information about the pitch angle distribution (PAD) of
the incident hot electrons ?



Information about the pitch angle distribution

Question : can we get information about the pitch angle distribution (PAD) of
the incident hot electrons ?

Idea : the energetic current modeling includes the maximum secondary
electron yield 6., (constant for a material), as well as the incident electron
distribution function f,, (often provided with a narrow PAD coverage by CAPS)

wss» one calculates the at each
time ; if this needed 6., is variable, then the partial distribution f,, given by
CAPS is seen by the spherical LP



Information about the pitch angle distribution

Question : can we get information about the pitch angle distribution (PAD) of
the incident hot electrons ?

Idea : the energetic current modeling includes the maximum secondary
electron yield 6., (constant for a material), as well as the incident electron
distribution function f,, (often provided with a narrow PAD coverage by CAPS)

wss» one calculates the at each
time ; if this needed 6., is variable, then the partial distribution f,, given by
CAPS is seen by the spherical LP

Method used

1. We add a weighting function to the CAPS incident electron distribution to
account for the PAD anisotropies (assuming max at an angle a,) :
J, . ws(EE) a:pitch angle of anode 5
Je,weighted(t’Ei)= ’ o, : peak angle of PAD
lcos(a(t) - )| %o P g

2. We make the peak PAD angle o, vary from O to i, and we search for the
angle leading to the most stable value of 6

emax



Informations sur la distribution en angle d'attaque

2-D Pitch Angle Spectrogram for Cassini / CAPS/ELS
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Interesting skill of the LP when CAPS has a narrow angular coverage



Which influence of hot electrons
in other environments ?
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isocontours corresponding to observations (solid lines) and modeling (dashed)



Which influence of hot electrons
in other environments ?
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We can, based on the known average plasma conditions, predict the
energetic currents to be measured in any environment : significant influence
expected at Earth, jovian satellites etc.




Conclusions

The Langmuir probe onboard Cassini is not only sensitive to cold and
dense plasma, but also to hot electrons (100-500 eV) and to their
secondaries.

+ These electrons influence both the DC level and slope of the current-
potential curve of the LP at negative potentials (ion collection side), in
particular inside a "belt" at L=6-10 Rs.

=+ The analysis of the energetic current induced by hot electrons helps to
identify and locate a plasmapause-like boundary at Saturn. It also allows to
determine the critical and anticritical temperatures of the LP (important
concepts for spacecraft charging).

+ Modeling the energetic current allows to extract information about the
incident 100-500 eV electrons : pitch angle anisotropies, temperature and
density

+ These results of the Langmuir probes, with
estimates of characteristics. Other
environments may be of interest : Earth, jovian satellites...






How to extract I,.?

Lon side (negative potential U p/i0sma = Ubias + Vfioat)

I(U <0)=m~bU,,
4

Given by Langmuir To be estimated
probe analysis independantly
m (nA) : ion side DC level |, - estimated from solar index
b (nA/V) : ion side slope |4t : @bsent off the equator
Vfloat (V) : floating potential . : ion current (cold and hot) :

estimation from CAPS ion moments

= | may be extracted off the equator (no dust, few ions)



Extraction of I,
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The energetic current I_.
is of the same order as
the photoelectrons
current in the « belt »
region.

The current contributions
from ambient ions and
b*Vfloat are small/
negligible

The SOI period (2004, doy 182) was chosen as a case study to extract I . since :

- the « belt » region was encountered...

- ... at locations where Idust can be neglected (off the equator, |Z|>1.2 Rs)

- ion moments are available from Sittler et al. (2006) to estimate |.



Why a belt ?

Mapping I.. (which can be approximated by Im-Iphl off the equator)

reveals the same radial profile as the 250-450 eV electrons
(see Schippers 2008, Rymer 2007, DeJong 2010)
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A key boundary region connected to the ionosphere through field-aligned
currents with an associated UV auroral oval
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Identification of critical / anticritical charging temperatures

Strong spacecraft (negative) charging
events may be observed (e.g. in the
Earth plasmasheet) when the incident
electrons have a temperature above a

critical value T* (Laframboise et al.,
1982)

Two specific temperatures -
anticritical T, and critical T* (see Lai
and Tautz, 2008) separate
temperature domains where the
incident electrons dominate over or
are dominated by secondaries

We show that these temperatures are
observed when the b____is null
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T, =50-60 eV and T* = 600-800 eV

First observational evidence for the existence of T,



Estimation of the peak yield J ,,

Calculation of the fictive & value needed to fit observationsof morb
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a6 roughly stable around 4-5 from both be* and me* (should be constant !)
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L But a strong influence of the orientation of the CAPS anode 5 (period 2)

‘ Influence of an anisotropic pitch angle distribution of energetic electrons ?



